Strategies to Prevent Ventilator-Associated Pneumonia in Acute Care Hospitals: 2014 Update

Michael Klompas, MD, MPH; Richard Branson, MSc, RRT; Eric C. Eichenwald, MD; Linda R. Greene, RN, MPS, CIC; Michael D. Howell, MD, MPH; Grace Lee, MD; Shelley S. Magill, MD, PhD; Lisa L. Maragakis, MD, MPH; Gregory P. Priebe, MD; Kathleen Speck, MPH; Deborah S. Yokoe, MD, MPH; Sean M. Berenholtz, MD, MPH

Purpose
Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections (HAIs). The intent of this document is to highlight practical recommendations in a concise format to assist acute care hospitals in implementing and prioritizing strategies to prevent ventilator-associated pneumonia (VAP) and other ventilator-associated events (VAEs) and to improve outcomes for mechanically ventilated adults, children, and neonates. This document updates "Strategies to Prevent Ventilator-Associated Pneumonia in Acute Care Hospitals," published in 2008. This expert guidance document is sponsored by the Society for Healthcare Epidemiology of America (SHEA) and is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America (IDSA), the American Hospital Association (AHA), the Association for Professionals in Infection Control and Epidemiology (APIC), and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise. The list of endorsing and supporting organizations is presented in the introduction to the 2014 updates.

Section 1: Rationale and Statement of Concerns
I. Patients on mechanical ventilation are at high risk for VAP and other complications
A. The true incidence of VAP is difficult to determine since surveillance definitions are subjective and nonspecific. Historically, 10%–20% of ventilated patients have developed VAP. More recent reports suggest much lower rates, but it is unclear to what extent these lower rates reflect better care versus stricter application of subjective surveillance criteria. Notwithstanding surveillance rates that hover near zero, clinical surveys suggest that 5%–15% of ventilated patients still develop nosocomial pneumonias.
B. Patients on mechanical ventilation are at risk for a variety of serious complications in addition to pneumonia. These include acute respiratory distress syndrome, pneumothorax, pulmonary embolism, lobar atelectasis, and pulmonary edema. The Centers for Disease Control and Prevention (CDC) released new surveillance definitions for VAE designed to make surveillance more objective and to expand surveillance from VAP alone to include additional serious complications of mechanical ventilation (see section 2). VAE definitions include criteria for ventilator-associated conditions (VACs), infection-related ventilator-associated complications (IVACs), possible pneumonia, and probable pneumonia. Approximately 5%–10% of mechanically ventilated patients develop VAEs.

II. VAP and other complications of mechanical ventilation are detrimental to patients and increase costs
A. The attributable mortality of VAP is estimated to be approximately 10% but varies considerably for different kinds of patients.
B. Both VAP and VAC extend patients’ duration of mechanical ventilation, increase intensive care and hospital length of stay, and increase mortality risk. They are also associated with increased use of antimicrobials.

C. VAP increases direct medical costs. Excess costs attributable to VAC have not been quantified.

SECTION 2: BACKGROUND—STRATEGIES TO DETECT VAP AND OTHER VAES

I. Despite VAP’s clinical importance, our ability to conduct accurate VAP surveillance is very limited.

A. VAP is usually defined by clinical, radiographic, and microbiological criteria. These criteria are neither sensitive nor specific relative to histopathology. These criteria are also very subjective, leading to substantial interobserver variability. Administrative data are similarly inaccurate. Improvements in VAP rates do not reliably correlate with improvements in outcomes.

1. The weaknesses of traditional VAP surveillance definitions limit their utility for measuring the impact of care improvement programs and for benchmarking quality of care between different healthcare facilities.

II. CDC’s VAE framework

A. The CDC convened representatives from critical and respiratory care, infectious diseases, healthcare epidemiology, and infection prevention professional societies in 2011–2012 to develop a new approach to surveillance for mechanically ventilated patients in an attempt to overcome some of the limitations of traditional VAP surveillance definitions.

1. The working group recommended the following:
 a. Developing new definitions based on objective, quantitative criteria to increase the reliability, reproducibility, comparability, and efficiency of surveillance.
 b. Broadening the focus of surveillance from pneumonia alone to complications of mechanical ventilation in general. This simultaneously sidesteps VAP definitions’ poor specificity and emphasizes the importance of preventing all complications of mechanical ventilation, not just pneumonia.

2. The CDC and the working group utilized emerging research on objective surveillance definitions to develop VAE definitions for adults.
 a. Objective definitions predicated on sustained increases in ventilator settings after a period of stability detect a range of clinically significant events, including VAP, pulmonary edema, acute respiratory distress syndrome, and atelectasis. They consistently predict poor patient outcomes, including prolonged mechanical ventilation, increased length of stay in both the intensive care unit (ICU) and the hospital, and increased hospital mortality. Early data suggest that VACs may be preventable. Surveillance using these definitions is efficient and potentially automatable.

b. The VAE surveillance framework includes 3 definition tiers. These definitions are briefly summarized below, but readers are advised to consult the CDC’s surveillance protocol for comprehensive details.

i. VACs
 a. VAC is defined by greater than or equal to 2 days of stable or decreasing daily minimum positive end expiratory pressure (PEEP) or daily minimum fraction of inspired oxygen (FiO₂) followed by an increase in daily minimum PEEP greater than or equal to 3 cm of H₂O or daily minimum FiO₂ greater than or equal to 0.20 points sustained for greater than or equal to 2 calendar days.

ii. IVACs
 a. IVAC is triggered by the presence of possible infection indicators concurrent with VAC onset, namely, an abnormal temperature (below 36°C or above 38°C) or white blood cell count (less than or equal to 4,000 or greater than or equal to 12,000 cells/mm³) and 1 or more new antibiotic starts that continue for greater than or equal to 4 days.

iii. Possible VAP and probable VAP
 a. Possible VAP is defined as Gram stain evidence of purulent pulmonary secretions or a pathogenic pulmonary culture in a patient with IVAC. Probable VAP is defined as Gram stain evidence of purulence plus quantitative or semiquantitative growth of a pathogenic organism beyond specified thresholds. Probable VAP can also be triggered by positive tests for respiratory viruses, Legionella species, pleural fluid cultures, and suggestive histopathology with or without an abnormal Gram stain result.

iv. VAC and IVAC were developed to be appropriate for public reporting; however, further evidence is needed of their preventability and comparability between institutions before recommending their adoption for public reporting or benchmarking.

v. Possible and probable VAP were developed for healthcare facilities to use for internal quality improvement purposes only. They are not suitable for public reporting or benchmarking because clinicians and hospitals vary widely in when and how they acquire and process pulmonary specimens from ventilated patients.
I. Framework for evaluating and prioritizing interventions

VAE definitions were designed for adult patients. More data are needed to inform whether and how VAE can be adapted for surveillance in children and neonates.

III. Recommended surveillance strategies

A. Hospitals are advised to conduct active surveillance for VAE, using CDC definitions and surveillance protocols. The CDC’s VAE module requires surveillance for all definition tiers (VAC, IVAC, possible VAP, and probable VAP).

1. Infection preventionists should work with their critical care, respiratory therapy, and/or information technology staff to develop efficient means to gather and aggregate ventilator data (daily minimum PEEP and daily minimum FiO₂) from all patients ventilated for greater than or equal to 4 days. Temperature, white blood cell count, and antibiotic exposure data are needed only for the subset of patients who fulfill VAC criteria to determine if they fulfill IVAC criteria. Pulmonary specimen Gram stains and microbiology test results are required only for the subset of patients who meet IVAC criteria to determine if they fulfill possible or probable VAP criteria.

2. Organizing daily ventilator data into “line lists” for every patient, with 1 row of data per patient per calendar day, facilitates VAC detection by allowing the surveyor to vertically scan daily ventilator settings to look for sustained increases that cross the threshold for VAC. Surveyors can also enter raw data into the CDC’s online “VAE calculator” to assist with case identification (http://www.cdc.gov/nhsn/VAE-calculator/index.html).

a. The VAE definitions are amenable to partial or complete automation using electronic data. Facilities seeking to automate VAE detection should work with their information technology personnel and/or electronic health record vendor(s).

SECTION 3: BACKGROUND—STRATEGIES TO PREVENT VAP AND OTHER VAEs

I. Framework for evaluating and prioritizing interventions

A. Although VAE is now the CDC’s recommended surveillance metric for ventilated patients, almost all of the existing literature on VAP prevention is based on traditional VAP definitions rather than VAE definitions. There are no data at present on the impact of traditional VAP prevention strategies on “probable pneumonias” (the closest proxy for VAP in the VAE framework), and there are very little data regarding their impact on VAC and IVAC. Of note, VAC and IVAC intentionally flag more than just pneumonia; hence, interventions directed solely against pneumonia may not be sufficient to reduce VAE rates.

B. VAC may be a surveillance marker for nosocomial acute lung injury. Qualitative analyses suggest that most VACs are due to pneumonia, pulmonary edema, atelectasis, and acute respiratory distress syndrome. Interventions that target these complications in particular and interventions designed to shorten the duration of mechanical ventilation in general may therefore be effective strategies to lower VAE rates. These could include minimizing the use of sedatives, paired daily spontaneous awakening and breathing trials, early mobility, endotracheal tubes with subglottic secretion drainage ports, low tidal volume ventilation, intermittent recruitment maneuvers, conservative fluid management, and restrictive transfusion thresholds. Studies evaluating the impact of these and other interventions on VAE rates are needed.

C. Until studies of the best strategies to prevent all VAEs are published, the existing VAP prevention literature is the best available guide to improving outcomes for ventilated patients. Given the uncertainty surrounding the accuracy and reproducibility of VAP diagnoses, however, we prioritize VAP interventions that have been shown to improve objective outcomes, such as duration of mechanical ventilation, intensive care or hospital length of stay, mortality, and/or costs in randomized controlled trials. In addition, the potential benefits of different interventions are balanced against their feasibility, costs, and potential harm. Recent reviews using this framework informed our recommendations.
Table 1. Grading of the Quality of Evidence

<table>
<thead>
<tr>
<th>Grade</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. High</td>
<td>Highly confident that the true effect lies close to that of the estimated size and direction of the effect. Evidence is rated as high quality when there is a wide range of studies with no major limitations, there is little variation between studies, and the summary estimate has a narrow confidence interval.</td>
</tr>
<tr>
<td>II. Moderate</td>
<td>The true effect is likely to be close to the estimated size and direction of the effect, but there is a possibility that it is substantially different. Evidence is rated as moderate quality when there are only a few studies and some have limitations but not major flaws, there is some variation between studies, or the confidence interval of the summary estimate is wide.</td>
</tr>
<tr>
<td>III. Low</td>
<td>The true effect may be substantially different from the estimated size and direction of the effect. Evidence is rated as low quality when supporting studies have major flaws, there is important variation between studies, the confidence interval of the summary estimate is very wide, or there are no rigorous studies, only expert consensus.</td>
</tr>
</tbody>
</table>

Note: Based on Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) and the Canadian Task Force on Preventive Health Care.

A. Avoid intubation if possible
1. Use noninvasive positive pressure ventilation (NIPPV) whenever feasible (quality of evidence: I).
 a. NIPPV can be beneficial for patients with acute hypercarbic or hypoxic respiratory failure secondary to chronic obstructive pulmonary disease or cardiogenic congestive heart failure. NIPPV for these indications may decrease VAP risk, shorten the duration of mechanical ventilation, decrease length of stay, and lower mortality rates compared with invasive ventilation. Use caution when considering NIPPV to manage impaired consciousness, acute lung injury, acute respiratory distress syndrome, severe hypoxemia, and severe acidemia or when continuing NIPPV for patients whose dyspnea or gas exchange fails to rapidly respond to NIPPV. Use of NIPPV for these indications may delay intubation and increase harm, including death.

B. Minimize sedation
1. Manage ventilated patients without sedatives whenever possible (quality of evidence: II).
 a. Preferentially use agents and strategies other than benzodiazepines to manage agitation, such as angesics for patients in pain, reassurance, antipsychotics, dexmedetomidine, and propofol.
2. Interrupt sedation once a day (spontaneous awakening trials) for patients without contraindications (quality of evidence: I).
 a. Two randomized controlled trials found that daily sedative interruptions decreased net sedative exposures and reduced the average duration of mechanical ventilation by 2–4 days. A third trial found no impact on duration of mechanical ventilation but used substantially higher doses of benzodiazepines compared with the first 2 trials and observed an increase in sedative use in the sedation-interruption group. These factors may have mitigated the potential benefits of sedative interruption in this trial.

3. Assess readiness to extubate once a day (spontaneous breathing trials) in patients without contraindications (quality of evidence: I).
 a. Daily spontaneous breathing trials are associated with extubation 1–2 days earlier compared with usual care.
4. Pair spontaneous breathing trials with spontaneous awakening trials (quality of evidence: I).
 a. Patients are more likely to pass a spontaneous breathing trial and be extubated if they are maximally awake at the time of the breathing trial.

C. Maintain and improve physical conditioning
 a. Early exercise and mobilization speed extubation, decrease length of stay, and increase the rate of return to independent function.
 b. Financial modeling suggests that early mobility programs may be cost saving.

D. Minimize pooling of secretions above the endotracheal tube cuff
1. Provide endotracheal tubes with subglottic secretion drainage ports for patients likely to require greater than 48 or 72 hours of intubation (quality of evidence: II).
 a. Intermittent and continuous drainage of subglottic secretions has been studied in 13 randomized controlled trials. On meta-analysis, the use of endotracheal tubes with subglottic drainage reduced VAP rates by 55%, mean duration of mechanical ventilation by 1.1 days, and intensive care length of stay by 1.5 days. There was no impact on hospital length of stay or mortality. One study found that subglottic secretion drainage was associated with less antibiotic utilization, while a second did not.
 b. Endotracheal tubes with subglottic secretion drainage may be cost saving.
c. Reductions in duration of mechanical ventilation with subglottic secretion drainage appear to be limited to patients expected to require greater than 48–72 hours of mechanical ventilation.83 Endotracheal tubes with subglottic secretion drainage ports are therefore recommended only as a basic practice for patients likely to require greater than 48–72 hours of intubation. Identifying these patients in advance can be very difficult. Patients requiring emergency intubation in the hospital and preoperative patients at risk for prolonged mechanical ventilation are reasonable candidates.

d. Exutubating patients to place a subglottic secretion drainage endotracheal tube is not recommended.

E. Elevate the head of the bed
1. Elevate the head of the bed to 30°–45° (quality of evidence: III).
 a. Elevating the head of the bed has been evaluated in only 3 randomized controlled trials enrolling 337 patients altogether.94-96 One trial reported a 76% decrease in VAP rates, whereas the other 2 found no difference in VAP rates. Of note, the larger of the 2 negative studies achieved minimal difference in head-of-bed elevation between the intervention and control groups, thereby limiting this study’s capacity to evaluate the effect of head-of-bed elevation on VAP or other outcomes.95 Nonetheless, a meta-analysis pooling these 3 studies did find a significant impact on VAP.97 In addition, enteral feeding in the supine position substantially increases the risk of developing VAP.98
 b. There are insufficient data at present to determine the impact of head-of-bed elevation on duration of mechanical ventilation or mortality, but given the simplicity, ubiquity, minimal risk, lack of cost, and potential benefit of this intervention we classify it as a basic practice while we await further data.

F. Maintain ventilator circuits
1. Change the ventilator circuit only if visibly soiled or malfunctioning (quality of evidence: I).
 a. Changing the ventilator circuit as needed rather than on a fixed schedule has no impact on VAP rates or patient outcomes but decreases costs.99-101
2. Follow CDC/Healthcare Infection Control Practices Advisory Committee guidelines for sterilization and disinfection of respiratory care equipment (quality of evidence: II).92

II. Special approaches

A. Interventions that decrease duration of mechanical ventilation, length of stay, and/or mortality but for which insufficient data on possible risks are available
1. Use selective decontamination of the oropharynx to decrease the microbial burden of the aerodigestive tract (quality of evidence: I).93-98

b. This strategy has not yet been adopted by North American centers, however, due to fear that it might increase the risk of antibiotic-resistant infections, including \textit{Clostridium difficile} infections, especially in centers with high baseline rates of antimicrobial-resistant organisms. Most studies to date do not indicate an elevated short-term risk for antimicrobial resistance, but long-term studies are lacking.99,100 Hospitals with high baseline rates of antibiotic resistance are advised to await the results of long-term studies of digestive decontamination in high-resistance environments before routinely adopting this strategy.

B. Interventions that may lower VAP rates but for which there are insufficient data at present to determine their impact on duration of mechanical ventilation, length of stay, and mortality
 a. Oral care with chlorhexidine has been studied in at least 16 randomized controlled trials and 9 meta-analyses to date.98,101-108 The benefits of oral care with chlorhexidine appear to be most pronounced in preventing postoperative respiratory tract infections in cardiac-surgery patients.108-110 The data for non-cardiac-surgery patients are more equivocal. Meta-analyses suggest that oral care with chlorhexidine can reduce pneumonia rates in this population by 10%–30%; however, there is no apparent impact on average duration of mechanical ventilation, intensive care length of stay, or mortality.98,101,102,108
 b. Routine oral care without chlorhexidine may be indicated for reasons other than VAP prevention.
 a. Four meta-analyses of randomized controlled trials have found an association between probiotics and lower VAP rates.111-114 Three of the meta-analyses reported on length of stay and mortality. Two found a positive impact on intensive care length of stay, while the third did not.111,112,113 None detected a significant impact on mortality rates. Probiotics should not be used in patients with compromised immune systems or gastrointestinal diseases that increase the risk of gut translocation. There are multiple case reports of fungemia or bacteremia in patients administered probiotics and case reports of aerosol transmission of probiotics within ICUs.115-119
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Rationale</th>
<th>Intervention</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic practices</td>
<td>Good evidence that the intervention decreases the average duration of mechanical ventilation, length of stay, mortality, and/or costs; benefits likely outweigh risks</td>
<td>Use noninvasive positive pressure ventilation in selected populations<sup>9</sup>,<sup>20</sup></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manage patients without sedation whenever possible<sup>40</sup>,<sup>62</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interrupt sedation daily<sup>62</sup></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess readiness to extubate daily<sup>47</sup>,<sup>66</sup>–<sup>68</sup></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perform spontaneous breathing trials with sedatives turned off<sup>89</sup></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Facilitate early mobility<sup>60</sup>,<sup>70</sup>–<sup>78</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilize endotracheal tubes with subglottic secretion drainage ports for patients expected to require greater than 48 or 72 hours of mechanical ventilation<sup>50</sup></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change the ventilator circuit only if visibly soiled or malfunctioning<sup>88</sup>–<sup>91</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevate the head of the bed to 30°–45°<sup>84</sup>–<sup>86</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td>Special approaches</td>
<td>Good evidence that the intervention improves outcomes but insufficient data available on possible risks</td>
<td>Selective oral or digestive decontamination<sup>93</sup>–<sup>96</sup></td>
<td>High<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May lower VAP rates but insufficient data to determine impact on duration of mechanical ventilation, length of stay, or mortality</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regular oral care with chlorhexidine<sup>98</sup>,<sup>101</sup>–<sup>104</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prophylactic probiotics<sup>111</sup>–<sup>114</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultrathin polyurethane endotracheal tube cuffs<sup>120</sup>,<sup>121</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automated control of endotracheal tube cuff pressure<sup>122</sup>,<sup>123</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saline instillation before tracheal suctioning<sup>124</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanical tooth brushing<sup>125</sup>,<sup>126</sup></td>
<td>Low</td>
</tr>
<tr>
<td>Generally not recommended</td>
<td>Lowers VAP rates but ample data suggest no impact on duration of mechanical ventilation, length of stay, or mortality</td>
<td>Silver-coated endotracheal tubes<sup>127</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kinetic beds<sup>128</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prone positioning<sup>97</sup>,<sup>129</sup>–<sup>134</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>No impact on VAP rates, average duration of mechanical ventilation, length of stay, or mortality<sup>c</sup></td>
<td>Stress ulcer prophylaxis<sup>1</sup>,<sup>135</sup>,<sup>136</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early tracheotomy<sup>17</sup></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoring residual gastric volumes<sup>138</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early parenteral nutrition<sup>159</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td>No recommendation</td>
<td>No impact on VAP rates or other patient outcomes, unclear impact on costs</td>
<td>Closed/in-line endotracheal suctioning<sup>140</sup>–<sup>143</sup></td>
<td>Moderate</td>
</tr>
</tbody>
</table>

^a There are very little data on head-of-bed elevation, but it is classified as a basic practice because of its simplicity, ubiquity, low cost, and potential benefit.

^b There are abundant data on the benefits of digestive decontamination but insufficient data on the long-term impact of this strategy on antimicrobial resistance rates.

^c May be indicated for reasons other than VAP prevention.

 a. Ultrathin polyurethane cuffs seal more uniformly against the tracheal wall and may therefore allow fewer secretions to seep around the cuff and into the lungs. Two studies reported lower VAP rates but were underpowered to assess other outcomes.¹²⁰,¹²¹

 a. Automated control of endotracheal tube cuff pressure led to lower VAP rates in one trial but not in another.¹²²,¹²³ Neither trial detected an impact on duration of mechanical ventilation, length of stay, or mortality.

5. Instill saline before tracheal suctioning (quality of evidence: III).
a. One randomized trial in oncology patients found that saline instillation before tracheal suctioning lowered the rate of microbiologically confirmed VAP but had no impact on clinical VAP rates or patient outcomes.124

a. Early versus late tracheotomy had no impact on VAP rates, duration of mechanical ventilation, or mortality risk on meta-analysis of 7 randomized controlled trials.137

b. Stress ulcer prophylaxis may have increased the risk of nosocomial pneumonia and mortality.135,136 Different trials have reached different conclusions regarding cost.143,144,145

Neonatal Patients

Framework for evaluating and prioritizing interventions. Very few studies in neonates evaluate the impact of VAP prevention interventions on duration of mechanical ventilation, length of stay, or mortality. We therefore evaluated potential interventions solely on the basis of safety, feasibility, and potential impact on VAP rates. Interventions that lower VAP rates and confer minimal risks of harm are classified as basic practices. Interventions with unproven but potential impact on VAP rates and minimal risk of harm are classified as special approaches. Hospitals can consider special approaches if their VAP rates do not improve despite high performance rates for basic practices. Interventions with unknown benefits, known risks of harm, or unknown risks of harm are not recommended.
TABLE 3. Summary of Recommendations for Preventing Ventilator-Associated Pneumonia (VAP) in Preterm Neonates

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Rationale</th>
<th>Intervention</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic practices</td>
<td>May lower VAP rates and minimal risks of harm; benefits likely outweigh potential risks</td>
<td>Use noninvasive positive pressure ventilation in selected populations[^148,149]^</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimize the duration of mechanical ventilation</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess readiness to extubate daily</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manage patients without sedation whenever possible[^150,151]</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avoid unplanned extubation[^152]</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provide regular oral care with sterile water</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimize breaks in the ventilator circuit</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change the ventilator circuit only if visibly soiled or malfunctioning[^241]</td>
<td>Low</td>
</tr>
<tr>
<td>Special approaches</td>
<td>Unknown impact on VAP rates, but risk of harm likely minimal; reasonable to consider implementing if rates remain elevated despite basic practices</td>
<td>Lateral recumbent positioning[^155]</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse Trendelenburg positioning</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closed/in-line suctioning systems[^156,157]</td>
<td>Low</td>
</tr>
<tr>
<td>Generally not recommended</td>
<td>Unknown impact on VAP rates and inadequate data on risks</td>
<td>Regular oral care with antiseptics</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>May be harmful; risk-benefit balance does not favor intervention unless specifically indicated for reasons other than VAP prevention</td>
<td>Histamine 2 receptor antagonists[^158,159]</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prophylactic broad-spectrum antibiotics[^160-163]</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daily spontaneous breathing trials[^164,165]</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daily sedative interruptions</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Not recommended because appropriate products are not available or approved for use in this population</td>
<td>Prophylactic probiotics or synbiotics[^166,167]</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Endotracheal tubes with subglottic secretion drainage ports</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver-coated endotracheal tubes</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note. NA, none available.

ary illnesses, including sepsis and necrotizing enterocolitis. New or progressive infiltrates often indicate progression of chronic lung disease rather than new infection.

Pooled mean VAP rates for neonates reported to the CDC’s National Healthcare Safety Network (NHSN) vary from 0.2 to 1.8 infections per 1,000 ventilator days.[^146] It is not known whether these rates are broadly representative of all neonatal units, however, since many hospitals do not perform VAP surveillance for neonates in light of the limitations of VAP definitions.

The CDC has not yet developed VAE definitions for neonates. Adult VAE definitions are not suitable for neonates, as they do not reflect standard ventilator management practices for this population.

I. Basic practices for preterm neonates: interventions with minimal risk of harm that may lower VAP rates
A. Avoid intubation if possible
1. Consider nasal continuous positive airway pressure ventilation with or without nasal intermittent mechanical ventilation as an alternative to intubation (quality of evidence: I).[^147,149]

2. Many premature neonates can be successfully supported with NIPPV.

B. Minimize the duration of mechanical ventilation
1. Manage patients without sedation whenever possible (quality of evidence: III).[^150,151]
3. Avoid unplanned extubations and reintubations (quality of evidence: III).[^152]
5. Minimize breaks in the ventilator circuit (extrapolated from studies in adults, no data in preterm neonates; quality of evidence: III).
6. Change the ventilator circuit only if visibly soiled or malfunctioning (extrapolated from studies in adults and children, no data in preterm neonates; quality of evidence: III).[^153,154]
impact on VAP rates

III. Generally not recommended
A. Inadequate data on risks and unknown impact on VAP rates in preterm neonates
1. Regular oral care with antiseptic (quality of evidence: III).
 a. There are insufficient data on the impact of altering neonatal microflora and whether oral antiseptics are absorbed across the oral mucosa of preterm neonates.
B. May be harmful to preterm neonates
1. Histamine H2-receptor antagonists may increase the risk of nosocomial infection and mortality in preterm neonates (quality of evidence: II).
2. Prophylactic broad-spectrum antibiotics are associated with increased risk of necrotizing enterocolitis, prolonged length of stay, and death in premature infants (quality of evidence: II).
 a. Ventilating preterm neonates with prolonged continuous positive airway pressure alone increases the risk of extubation failure.
C. Not applicable to preterm neonates
 a. Sedation is not routinely required for neonates on mechanical ventilation.
 b. There are no data on the impact of interrupting sedatives when sedation is used.
 a. There are currently no products approved by the US Food and Drug Administration for preterm neonates. Limited data suggest that these may benefit some patients, but there are also multiple case reports of Lactobacillus bacteremia in infants and children following probiotic therapy.
3. Endotracheal tubes equipped with subglottic secretion drains; suitably sized products are not commercially available (quality of evidence: none available).
4. Silver-coated endotracheal tubes; suitably sized products are not commercially available (quality of evidence: none available).

Pediatric Patients

Framework for evaluating and prioritizing interventions. Diagnosing VAP is as challenging in term infants and children as in preterm neonates and adults. The CDC has convened a working group to consider whether modified VAE definitions might be suitable for infants and children.

Risk factors for VAP in infants and children are similar to those of adults. Once they develop teeth, children’s oral flora are similar to those of adults.

In general, most VAP prevention interventions recommended for adults are presumed to be applicable to infants and children. Some interventions recommended for adults, however, are not available for infants and small children. For example, some specialized endotracheal tubes are available only in larger sizes.

I. Basic practices for pediatric patients: interventions with minimal risk of harm and some data that they lower VAP rates
A. Avoid intubation if possible
1. Use NIPPV in selected populations whenever feasible (quality of evidence: II).
 a. Risks of NIPPV in pediatric patients mirror those for adults listed above in section I.A.1.A, with the added issue that pediatric patients often need sedation to tolerate NIPPV.
B. Minimize the duration of mechanical ventilation
1. Assess readiness to extubate daily in patients without contraindications (quality of evidence: II).
 a. A randomized controlled trial in Brazil reported that daily spontaneous breathing trials decreased the mean duration of ventilation. There is no consensus on the most effective technique for spontaneous breathing trials in pediatric patients.
C. Provide regular oral care
 a. Two before-after studies of VAP bundles that emphasized oral care found decreases in VAP rates.
 b. The American Dental Association recommends beginning oral hygiene a few days after birth. Wipe the gums with a gauze pad after each feeding to remove plaque and residual formula that could harm erupting teeth. When teeth erupt, brush them gently twice a day with a child’s size toothbrush and water. Fluoride toothpaste is recommended from 2 years of age onward. After oral hygiene, rinse and suction the mouth. Keep the oral mucosa and lips clean, moist, and intact using sponge-tipped applicators dipped in nonalcohol, nonperoxide mouth rinse.
D. Elevate the head of the bed
1. Elevate the head of the bed unless medically contraindicated (quality of evidence: III).
 a. One before-after study of a VAP bundle that in-
Table 4. Summary of Recommendations for Preventing Ventilator-Associated Pneumonia (VAP) in Pediatric Patients

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Rationale</th>
<th>Intervention</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic practices</td>
<td>Some data that the intervention lowers VAP rates and minimal risks of harm; potential benefits likely outweigh potential risks</td>
<td>Use noninvasive positive pressure ventilation for selected populations<sup>179,180</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess readiness to extubate daily using spontaneous breathing trials in patients without contraindications<sup>181,183</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avoid unplanned extubations<sup>185</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provide regular oral care (ie, toothbrushing or gauze if no teeth)<sup>175</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevate the head of the bed to 30°–45°<sup>11034</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change ventilator circuits only if visibly soiled or malfunctioning<sup>172</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use cuffed endotracheal tubes<sup>189,190</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prevent condensate from reaching the patient<sup>173,188</sup></td>
<td>Low</td>
</tr>
<tr>
<td>Special approaches</td>
<td>Unknown impact on VAP rates, but risk of harm likely minimal; reasonable to consider implementing if rates remain elevated despite basic practices</td>
<td>Interrupt sedation daily<sup>192</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prophylactic probiotics</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilize endotracheal tubes with subglottic secretion drainage ports for older pediatric patients expected to require greater than 48 or 72 hours of mechanical ventilation<sup>50</sup></td>
<td>Low</td>
</tr>
<tr>
<td>Generally not recommended</td>
<td>Unknown impact on VAP rates and inadequate data on risks</td>
<td>Systemic antimicrobial therapy for ventilator-associated tracheobronchitis</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selective oropharyngeal or digestive decontamination</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral care with antiseptics, such as chlorhexidine<sup>105,106</sup></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stress ulcer prophylaxis<sup>189,200</sup></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early tracheotomy</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thromboembolism prophylaxis</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver-coated endotracheal tubes</td>
<td>Low</td>
</tr>
<tr>
<td>No recommendation</td>
<td>Limited data on pediatric patients; no impact on VAP rates or outcomes in adults; unclear impact on costs</td>
<td>Closed/in-line suctioning<sup>201</sup></td>
<td>Low</td>
</tr>
</tbody>
</table>

^a May, however, be indicated for reasons other than VAP prevention.

Excluded head-of-bed elevation observed a decrease in VAP rates.¹⁷³

b. Many hospital cribs do not have inbuilt angle-measuring devices. Alternative measuring devices are required in these circumstances.

E. Maintain ventilator circuits

1. Change ventilator circuits only when visibly soiled or malfunctioning (quality of evidence: II).
 a. One randomized trial and 1 observational study found no difference in VAP rates or mortality with 3-day versus 7-day circuit changes. Circuit changes are therefore recommended only when the circuit is soiled or malfunctioning, to minimize costs.^{153,154}
 2. Remove condensate from the ventilator circuit frequently (quality of evidence: III).

 a. Avoid draining the condensate toward the patient.¹⁷³

 3. Suction oral secretions before each position change (quality of evidence: III).¹⁸⁰

F. Endotracheal tube selection and maintenance

1. Use cuffed endotracheal tubes (quality of evidence: III).
 a. Pediatric intensivists have historically favored uncuffed tubes due to concern that cuffs may induce subglottic stenosis in pediatric airways. Cuffing has been proven safe, however, and may decrease the risk of microaspiration.^{189,190} Cuffed tubes are now used routinely for term newborns and children.¹⁹¹

2. Maintain cuff pressure and volume at the minimal
occlusive settings to prevent clinically significant air leaks around the endotracheal tube, typically 20 cm of water (quality of evidence: III).123,189

a. The potential merits of automated manometers for VAP prevention have not been studied in pediatric patients.

II. Special approaches for pediatric patients

A. Interventions with evidence of benefit in adult patients and minimal risks of harm but limited data in pediatric populations

1. Interrupt sedation once a day (quality of evidence: II).
 a. Daily sedative interruptions decreased duration of mechanical ventilation and intensive care length of stay without increases in adverse event rates in 1 small randomized controlled trial.192
 b. There is nonetheless concern that sedative interruptions will increase the frequency of unplanned extubations and reintubations in younger patients, so this practice may be safest in older pediatric patients. More data are needed.

 a. This recommendation is inferred from adult data but should be considered with caution due to sparse safety data in pediatric patients and case reports of Lactobacillus bacteremia associated with probiotic therapy, including cases in children without known immunodeficiency.111–114,169–171

 a. This intervention is feasible only for children aged greater than or equal to 10 years since the smallest available endotracheal tube with subglottic secretion drainage ports is size 6.0.

III. Generally not recommended for pediatric patients

A. Unknown impact on VAP rates and/or inadequate data on risks

 a. One retrospective study found that prolonged antibiotics for tracheobronchitis did not protect against VAP but did increase the prevalence of multidrug-resistant organisms.193

2. Selective oropharyngeal or digestive decontamination (quality of evidence: III).
 a. See comments in section on adults.

B. No impact on VAP rates (these interventions may, however, be indicated for reasons other than VAP prophylaxis)

 a. Chlorhexidine appears to be safe for developing teeth,194 but randomized controlled trials have found no difference in VAP rates, length of stay, or mortality in infants and children.193,195–198

 a. Two small studies found no impact on VAP rates.199,200

C. Lowers VAP rates but no impact on duration of mechanical ventilation, length of stay, or mortality

IV. No recommendation: limited data from pediatric studies, no impact on VAP rates or outcomes in adults, unclear impact on costs

A. Closed/in-line suctioning

1. An observational study of open versus closed suction in children did not find any difference in VAP rates, length of stay, or mortality, but the significance of these findings are unclear given the lack of blinding and randomization (quality of evidence: III).201

SECTION 5: PERFORMANCE MEASURES

I. Internal reporting

A. Regular monitoring and internal reporting of patient outcomes and adherence rates to recommended prevention strategies (“process measures”) are important quality improvement strategies.

B. Both outcome and process measure reporting are likely beneficial: improving outcomes is the primary goal of care improvement programs, but analyzing performance rates for key processes of care may help identify specific processes to target for improvement.

C. Report process and outcome measures to key organizational stakeholders, including frontline care providers, respiratory therapy directors, nursing and medical leaders, and senior hospital administrators. Feeding these data back to providers and leaders has been associated with improvements in both performance rates and outcomes.202–207

D. Report process measures internally only. External reporting of process measure data is not appropriate at this time given substantial variability in the ways different organizations define, collect, analyze, and present process measure data.

E. There are insufficient data at present to guide the definition and implementation of process measures for the prevention of VAP in neonatal and pediatric units.

II. Process measures

A. Process measure definitions and measurement strategies vary widely

1. For organizations that collect and report process measures, clearly define measures, including data sources, inclusion and exclusion criteria, frequency of monitoring, and numerator and denominator criteria.

2. Develop a formal system to document compliance.
Compliance can be measured via direct observations or via audits of patient charts, bedside paperwork, and/or electronic medical records. Periodically validate the accuracy of paper and/or electronic documentation.

Perform assessments regularly.

The optimal frequency of assessments (e.g., once daily, twice daily, or weekly) is not known, but the frequency can likely be adjusted on the basis of compliance rates (e.g., as compliance improves, less frequent observations may be sufficient).

B. Prevention bundles

1. Consider combining a core set of critical process measures together into a bundle to enhance care. Bundling care processes facilitates implementation by providing a clear, tangible set of expectations to follow. In addition, some care processes may be synergistic.

2. There is no consensus on which care processes to include in a VAP prevention bundle. There is substantial heterogeneity in different hospitals’ ventilator bundles.

3. Evidence on the impact of bundles is limited. Many prevention bundles have been associated with variable reductions in VAP rates. A smaller subset has been associated with improvements in objective outcomes. To date, however, prevention bundles have been tested only in observational before-after and time-series analyses rather than in randomized controlled trials. It is therefore difficult to disentangle the extent to which lower VAP rates and better outcomes are due to prevention bundles versus secular trends in severity of illness, advances in medical care, and ascertainment biases.

4. Compliance can be reported for each process measure individually and/or as all-or-none compliance with a bundle of process measures. For all-or-none compliance, credit is given only if all components have been accomplished and documented; if any components were not performed and/or were not documented, no credit is given.

III. Approaches to defining process measures

A. There is no consensus on how best to define adherence to different process measures. Examples of how different organizations have defined selected process measures are summarized below. These examples are primarily drawn from multicenter quality improvement initiatives.

1. Optimize hand hygiene

 a. Readers are referred to the Compendium article “Strategies to Prevent Healthcare-Associated Infections through Hand Hygiene” for a comprehensive discussion of this topic.

2. Minimize sedation

 a. Perform spontaneous awakening trials daily.

 i. Definitions

 (a) Girard et al defined this as the percentage of sedative-days (ventilator-days during which sedatives are administered) on which sedative and analgesic continuous infusions were interrupted or where at least 1 scheduled dose of an intermittently prescribed sedative or analgesic was withheld.

 (b) Berenholtz et al defined this as the percentage of ventilator-days on which patients prescribed any sedative medications were able to follow commands at least once during the course of the day.

 b. Inclusion criteria: all patients on mechanical ventilation being treated with 1 or more of the following drugs: lorazepam, midazolam, propofol, fentanyl, morphine, meperidine, hydromorphone, or dexmedetomidine.

 c. Exclusion criteria: patients receiving a sedative infusion for active seizures or alcohol withdrawal, escalating sedative doses due to ongoing agitation, neuromuscular blockade, evidence of active myocardial ischemia within the previous 24 hours, evidence of increased intracranial pressure.

3. Expedite extubation

 A. Perform spontaneous breathing trials daily

 a. Definitions

 i. Percentage of ventilator-days on which patients received a trial of spontaneous ventilation. A trial of spontaneous breathing is defined as a period of time where ventilatory support is removed. This can be done by allowing the patient to

 (a) Breathe through a T-tube circuit

 (b) Breathe through a ventilator circuit using “flow triggering” with continuous positive airway pressure of 0–5 cm of water and/or pressure support ventilation with 5–8 cm of water.

 ii. The initial spontaneous breathing trial should last at least 30 minutes.

 b. Inclusion criteria: all patients on mechanical ventilation.

 c. Exclusion criteria: oxygen saturation less than 88%, FiO₂ greater than 50%, PEEP greater than 8 cm of water, lack of spontaneous breathing effort for greater than or equal to 5 minutes, agitation, active myocardial ischemia, significant vasopressor requirement, increased intracranial pressure, moribund state with death likely imminent.

4. Minimize the risk of aspiration

 a. Elevate the head of the bed

 i. Definitions

 (a) Berenholtz et al defined this as the per-
IV. Outcome measures

A. Conduct surveillance for all VAEs, including VAC, IVAC, possible VAP, and probable VAP in adult ICUs. Report rates for all events included in the algorithm. VAE definitions are not currently available for pediatric and neonatal patients; hence, these units should continue to use traditional NHSN VAP definitions.

1. VAE incidence density
 a. Numerator: total number of VACs, including IVACs, possible VAPs, and probable VAPs.
 b. Denominator: total ventilator-days.
 c. Multiply by 1,000 and express as VAEs per 1,000 ventilator-days.
 d. Note that the total VAE rate is synonymous with the total VAC rate.

2. IVAC incidence density
 a. Numerator: total number of IVACs, including possible VAPs and probable VAPs.
 b. Denominator: total ventilator-days.
 c. Multiply by 1,000 and express as IVACs per 1,000 ventilator-days.

3. VAP incidence density
 a. Organizations can consider calculating both their total VAP rate (sum of possible and probable VAPs) and their probable VAP rate for internal monitoring purposes. The former metric is presumed to be more sensitive, the latter more specific.
 b. Total VAP rate
 i. Numerator: total number of all possible and probable VAPs.
 ii. Denominator: total ventilator-days.

b. T otal VAP rate
 a. Numerator: total number of IVACs, including possible VAPs and probable VAPs.
 b. Denominator: total ventilator-days.
 c. Multiply by 1,000 and express as IVACs per 1,000 ventilator-days.

i. Multiply by 1,000 and express as the overall VAP rate per 1,000 ventilator-days.

ii. Denominator: total ventilator-days.

iii. Multiply by 1,000 and express as the probable VAP rate per 1,000 ventilator-days.

V. External reporting

A. VAC and IVAC are potentially appropriate metrics for public reporting, interfacility comparison, and pay-for-performance programs. Better data on their responsiveness to quality improvement programs are necessary, however, before recommending them for interfacility comparisons or pay-for-performance programs. Suitable risk-adjustment strategies are also needed.

B. Possible and probable VAP are not suitable for external reporting at this time since substantial variability in clinical and laboratory practices in the acquisition, processing, and interpretation of culture data preclude meaningful comparisons of VAP rates between institutions.

C. VAP rates generated using NHSN’s former surveillance definitions are not appropriate for external reporting in light of their considerable subjectivity.

D. Hospitals in states that have mandatory reporting laws must collect and report data as required by their state. Local and state health departments can provide specific information on public reporting requirements.

SECTION 6: IMPLEMENTATION STRATEGIES

Accountability is an essential principle for preventing HAIs. It provides the necessary translational link between science and implementation. Without clear accountability, scientifically based implementation strategies will be used in an inconsistent and fragmented way, decreasing their effectiveness in preventing HAIs. Accountability begins with the chief executive officer and other senior leaders who provide the imperative for HAI prevention, thereby making HAI prevention an organizational priority. Senior leadership is accountable for providing adequate resources needed for effective implementation of an HAI prevention program. These resources include necessary personnel (clinical and nonclinical), education, and equipment (Table 5).

Engagement, education, execution, and evaluation are further common attributes of successful care improvement programs. These attributes are elaborated below.

I. Engage

A. Develop a multidisciplinary team
 1. Multidisciplinary teams set goals, define each step in the implementation process, and monitor progress in
C. Utilize peer networks

1. Horizontal networking of peers across hospitals can promote and increase compliance with evidence-based best practices. Voluntary peer networks encourage collaboration, analysis of performance, accountability, and commitment to specific goals.207,225-227 Comparing progress and benchmarks between ICUs can help units better understand their local strengths and weaknesses, learn from best practices, brainstorm solutions to common problems, and promulgate local successes.227

II. Educate

A. Provide education sessions

1. Education sessions help summarize evidence, explain new processes, set expectations, and encourage staff to adopt recommended practices.202,228 Education sessions can include workshops, hands-on trainings, conferences, slide presentations, and/or interactive discussions; employing multiple teaching modalities can help meet diverse learning styles.224,229,230 Both local champions and topic experts (eg, infection preventionists) can lead staff education.173,226

2. Education sessions must be informative and relevant for the learner; therefore, it is important to have multidisciplinary educational programs customized for different specialties.203,204,218

3. Ongoing staff education helps maintain high levels of compliance with recommended practices.205,230

4. Educating patients and family members may help them better engage with and support the medical team’s plan of care.

B. Provide educational materials

1. Provide educational materials to staff that summarize the evidence, support self-study, and remind staff about new practices.231 Examples of educational materials include pocket cards, brochures, posters, fact sheets, daily guides, guideline summaries, flow sheets and 1-page bulletins.173,205,207,212,219,232

III. Execute

A. Standardize care processes

1. Standardize care processes through the implementation of guidelines, bundles, protocols, or pathways. Standardization helps establish new care processes as “normal behaviors” for staff.202

Table 5. Fundamental Elements of Accountability for Healthcare-Associated Infection Prevention

<table>
<thead>
<tr>
<th>Senior management is responsible for ensuring that the healthcare system supports an infection prevention and control (IPC) program that effectively prevents healthcare-associated infections (HAIs) and the transmission of epidemiologically important pathogens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior management is accountable for ensuring that an adequate number of trained personnel are assigned to the IPC program and adequate staffing of other departments that play a key role in HAI prevention (eg, environmental services).</td>
</tr>
<tr>
<td>Senior management is accountable for ensuring that healthcare personnel, including licensed and nonlicensed personnel, are adequately trained and competent to perform their job responsibilities.</td>
</tr>
<tr>
<td>Direct healthcare providers (such as physicians, nurses, aides, and therapists) and ancillary personnel (such as environmental service and equipment processing personnel) are responsible for ensuring that appropriate IPC practices are used at all times (including hand hygiene, standard and isolation precautions, and cleaning and disinfection of equipment and the environment).</td>
</tr>
<tr>
<td>Senior and unit leaders are responsible for holding personnel accountable for their actions.</td>
</tr>
<tr>
<td>IPC leadership is responsible for ensuring that an active program to identify HAIs is implemented, that HAI data are analyzed and regularly provided to those who can use the information to improve the quality of care (eg, unit staff, clinicians, and hospital administrators), and that evidence-based practices are incorporated into the program.</td>
</tr>
<tr>
<td>Senior and unit leaders are accountable for ensuring that appropriate training and educational programs to prevent HAIs are developed and provided to personnel, patients, and families.</td>
</tr>
<tr>
<td>Personnel from the IPC program, the laboratory, and information technology departments are responsible for ensuring that systems are in place to support the surveillance program.</td>
</tr>
<tr>
<td>Fundamental Elements of Accountability for Healthcare-Associated Infection Prevention</td>
</tr>
<tr>
<td>Senior management is responsible for ensuring that the healthcare system supports an infection prevention and control (IPC) program that effectively prevents healthcare-associated infections (HAIs) and the transmission of epidemiologically important pathogens.</td>
</tr>
<tr>
<td>Senior management is accountable for ensuring that an adequate number of trained personnel are assigned to the IPC program and adequate staffing of other departments that play a key role in HAI prevention (eg, environmental services).</td>
</tr>
<tr>
<td>Senior management is accountable for ensuring that healthcare personnel, including licensed and nonlicensed personnel, are adequately trained and competent to perform their job responsibilities.</td>
</tr>
<tr>
<td>Direct healthcare providers (such as physicians, nurses, aides, and therapists) and ancillary personnel (such as environmental service and equipment processing personnel) are responsible for ensuring that appropriate IPC practices are used at all times (including hand hygiene, standard and isolation precautions, and cleaning and disinfection of equipment and the environment).</td>
</tr>
<tr>
<td>Senior and unit leaders are responsible for holding personnel accountable for their actions.</td>
</tr>
<tr>
<td>IPC leadership is responsible for ensuring that an active program to identify HAIs is implemented, that HAI data are analyzed and regularly provided to those who can use the information to improve the quality of care (eg, unit staff, clinicians, and hospital administrators), and that evidence-based practices are incorporated into the program.</td>
</tr>
<tr>
<td>Senior and unit leaders are accountable for ensuring that appropriate training and educational programs to prevent HAIs are developed and provided to personnel, patients, and families.</td>
</tr>
<tr>
<td>Personnel from the IPC program, the laboratory, and information technology departments are responsible for ensuring that systems are in place to support the surveillance program.</td>
</tr>
</tbody>
</table>
2. Daily multidisciplinary rounds are widely advocated; these rounds should follow a structured format and include discussion about the patients' goals for the day, consideration of what resources and actions are necessary to achieve these goals, and identification of potential barriers and/or safety issues.

B. Create redundancy

1. Build redundancy or independent checks into care-delivery processes to remind staff about new practices. Redundancy can take the form of posters, bulletins, pens, stamps, pocket cards, 1-page signs, daily goals in patient rooms, checklists and preprinted order sets, text messages, and screen savers on clinical computers. Encourage family members to ask the care team if patients are receiving evidence-based therapies for VAP prevention.

2. The combination of both education and reminders significantly improves processes of care.

IV. Evaluate

A. Measure performance

2. Evaluating performance provides an ongoing, real-time image of actual implementation rates.

3. Areas of poor compliance can be rapidly identified and rectified. If compliance remains poor in one area, the improvement team should walk the process with staff to gain additional insights into barriers to implementation.

5. Analyze all or a representative sample of VACs for etiology and preventability. Pneumonia, pulmonary edema, acute respiratory distress syndrome, and atelectasis are typical etiologies for VACs. Use your analyses to select and refine prevention strategies that address the most frequent and preventable causes of VACs in your clinical setting.

B. Provide feedback to staff

1. Provide regular feedback on process and/or outcome data to staff. Feedback can be provided via wall displays or during meetings. Providing feedback helps staff appreciate how their efforts to improve are impacting performance rates and patients’ outcomes. This helps maintain staff motivation and can boost adherence to new processes.

2. Feedback is also important for future efforts because feedback helps pinpoint new areas for improvement and marks successful transitions to new standards of care.

ACKNOWLEDGMENTS

Disclaimer. S.M.—The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Address correspondence to Michael Klompas, MD, MPH, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, 133 Brookline Avenue, 6th Floor, Boston, MA 02215 (mklompas@partners.org).

REFERENCES

82. Hallais C, Merle V, Guittard PG, et al. Is continuous subglottic suctioning cost-effective for the prevention of ventilator-

Berenholtz SM, Pham JC, Thompson DA, et al. Collaborative cohort study of an intervention to reduce ventilator-associated...

